SECTION 6

ANCHロRING AND GUYING

Anchors \& Guying - General Discussion

Anchors and guys are a crucial part of line design. Therefore, we must ensure that the anchors and guying are adequate for the design tensions involved.

All guys will be of $3 / 8$ " aluminum clad steel strand or $3 / 8^{\prime \prime}$ stainless steel strand (to be used near coastal areas) with a respective RTS (Rated Tensile Strength) of 15,930 and 16,200 lbs. Previously, guys were aluminized steel strand with a RTS of $10,800 \mathrm{lbs}$.

Guys are to be terminated preferably on a guy hook but can be terminated on a thimble eye or a guy roller to maintain the required bending radius for the guy grip loop; when it is necessary to terminate on an eye bolt or other eye type fixtures, a GUY THIMBLE must be used (LIN-902-00001 or 902-00002).

Anchors will primarily be of three types:

- Stub Anchor (with concrete): this anchor can normally withstand guy tensions of 15,000 to 25,000 lbs.
- Expanding Shell rock Anchor: this anchor (either 30" or 7') when installed in hard rock can accommodate guy tensions of up to $15,000 \mathrm{lbs}$.
- Power Installed Screw Anchor: there are two types now in use, the 10 " helix and the swamp anchor. When installed properly they should be capable of accommodating tensions up to 15,000 lbs.

Further installation information on anchors is detailed on pages 6-12 and 6-13.

Guy Strain Insulator Rods

Guy strain insulator rods should be used in all locations where it is possible for the guy to become energized.

Guy strain insulators are not necessarily designed or rated for sustained voltage, but rather as occasional energization for a short period of time. Therefore we should not install these insulators where they will be continuously or permanently energized.

The standard guy strain insulator rods are rated at $21,000 \mathrm{lbs}$ and are 24 and 54 inches in length with a clevis on one end and a thimble eye on the other. The basic unit is the 54 " rod with a thimble eye for the guy grip: this can be extended with one or more rods as required.

When extending guys from structure to structure, between energized lines, one guy strain insulator rod should be used at each end to ensure isolation of the guy.

DATE:, 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose		
REV.:	STANDARD ANCHOR AND GUYING DESIGN	
DATE:		
	APPROVED BY:	STANDARD NO.
	DATE:, 2017	6-1

Guying - Calculating Design Tensions

Guying requirements are determined from the conductor size, the number of conductors, the line angle and the structure type.

The DESIGN LOAD for all angle structures include the resultant horizontal tensions, calculated from the conductor tensions and the line angle, plus the wind load on the conductors; the values used are tabulated on page 6-3.

For all structure types, the guying requirements and the minimum guy leads are as shown on pages 6-9 to 6-11.

DATE: 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose	STANDARD ANCHOR AND GUYING DESIGN	
REV.:	STANDARD NO.	
DATE:	APPROVED BY:	STAND
	DATE: , 2017	$\mathbf{6 - 2}$

Design Tensions and Conductor Loading

The following values for conductor loading have been calculated for a ruling span of 200 feet; it has been determined that the majority of our distribution lines have a ruling span of 200 feet or less.

Design Tensions \& Conductor Loading (AS A RESULT OF HURRICANE WIND CONDITIONS) PER CONDUCTOR									
$\begin{aligned} & \hline \text { LINE ANGLE } \\ & \text { (Degrees) } \end{aligned}$	Resultant Tension Due to Angle (lbs)			Wind Load on Conductor			Combined Load (lbs)		
	2/0	4/0	477	2/0	4/0	477	2/0	4/0	477
5	108	152	259	206	260	394	314	412	653
10	216	304	518	205	259	393	421	563	911
15	324	455	776	204	258	391	528	713	1167
20	431	605	1032	203	256	388	634	861	1420
25	537	754	1286	201	254	385	738	1008	1671
30	642	902	1538	199	251	381	841	1153	1919
35	746	1048	1787	197	248	376	943	1296	2163
40	848	1192	2032	194	244	370	1042	1436	2402
45	949	1333	2274	190	240	364	1139	1573	2638
50	1048	1472	2511	187	236	357	1235	1708	2868
55	1145	1609	2744	183	230	350	1328	1839	3094
60	1240	1742	2971	178	225	341	1418	1967	3312

The above values can be used to determine guying tensions; for a three phase structure with 477 AAC conductor, a 4/0 AAC neutral, and a line angle of 20° the total load becomes $(3 \times 1420)+(861)=5121$ lbs . The guy lead for a single guy with a 40 -foot pole, calculated from the formulae on page $6-5 / 6$, is 33 feet.

These values can be used for Ruling Spans up to 225^{\prime} with negligible error. These values together with the formulae on page 6-5/6 are used to determine the minimum guy lead; the guy lead should normally be at 30° to 45° with the pole, with 45° being the optimum (at 45° the guy lead is equal to the attachment height).
(2)

You've got the power

DATE:, 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose		
REV.:	STANDARD ANCHOR AND GUYING DESIGN	
DATE:		
	APPROVED BY:	STANDARD NO.
	DATE: , 2017	6-3

Guying - Angle Structures with Taps

When constructing lines the main line is normally built first, and taps off the main line are constructed later. When the main line structure is an angle structure, it will be guyed; when the tap is connected to this structure it will normally be guyed as well.

When the direction of the tap is the same as the main line structure guy it is sometimes assumed that this guy is no longer required; this, however, will depend on the line angle and the conductor size. To ensure that we do not over tension the tap conductor by removing a guy, the tension due to the line angle and the tension of the tap conductor(s) must be calculated.

The resultant tensions at an angle structure, due to the conductor tension, can be calculated using the chart on page 6-3 (full conductor tension is equal to the resultant conductor tension for a 60° line angle).

For example: - Assuming a line angle of 15° and a three phase line with $4 / 0 \mathrm{AAC}$ conductor; the resultant tension due to the primary conductor tension is $3 \times 455 \mathrm{lbs}=1365 \mathrm{lbs}$.

If we install a single phase tap using $2 / 0 \mathrm{AAC}$ conductor, the full design tension for $2 / 0 \mathrm{AAC}$ is 1240 lbs ; therefore the guy can be removed if required, since the two tensions are almost equal.

Also if the tap conductor is two or three phases a guy will be required to hold against the tap.
Occasionally a guy can be removed or is not required, if the calculated tensions are equal; however these guys will normally be required.

DATE: 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose	STANDARD ANCHOR AND GUYING DESIGN	
REV.:	STA	
DATE:	APPROVED BY:	STANDARD NO.
	DATE: , 2017	$\mathbf{6 - 4}$

Calculating Minimum Guy Lead Distance

The minimum guy lead distance can be determined using the following calculation:

$$
\text { Min Guy Lead }=\text { TAN }\left[S I N^{-1}\left(\frac{\text { Resultant Tension }}{\text { Guy Rating }}\right)\right] \times \text { Guy Attachment Height }
$$

Where: Min Guy Lead is in feet
Guy Attachment is in feet
Resultant Tension is in pounds (as determined from the formulae below)
Guy Rating is in pounds (7200 lbs. as determined below)
The Guy Rating or Allowable Tension under maximum loading conditions (hurricane wind at 30 psf) has been calculated at 7,200 lbs. using the rating of the aluminized steel strand in use on existing structures.

$$
\text { Guy Rating }=\frac{\text { Rated Guy Wire Strength }}{\text { Safety Factor }}=\frac{10,800}{1.5}=7,200 \mathrm{lbs}
$$

The maximum conductor tension, under hurricane wind conditions of 30 psf , using a ruling span of 200 ft . is 2971 lbs . for $477 \mathrm{AAC}, 1742 \mathrm{lbs}$. for $4 / 0 \mathrm{AAC}$ and 1240 lbs . for 2/0 AAC. For ruling spans greater than 200 ft . the actual tensions shall be used (i.e. 3296 lbs. for 477 AAC with a 250 ft . ruling span).

The RESULTANT TENSION (TR) due to the MAXIMUM CONDUCTOR TENSION (Tmax) at any line angle can be calculated:

$$
\text { Resultant Tension }=\text { Max Cond Tension } \times \frac{\sin \theta}{\sin \left(90^{\circ}-\theta / 2\right)}
$$

Where: $\theta=$ line angle in degrees

TR = Resultant Tension due to line angle
$\mathrm{T}(\max)=$ Conductor tension under hurricane conditions

	DATE: , 2017	DISTRIBUTION STANDARDS	
	DRAWN: C. Rose		
	REV.:	STANDARD ANCHOR AND GUYING DESIGN	
You've got the power 457 NORTH SOUND RD. P.O. BoX 38 G.T, GRAND CAYMAN, CAYMAN ILLANDS, B.W.... TELEPHONE: (345)-945-5300/5200	DATE:		
		APPROVED BY:	STANDARD NO. 6-5
		DATE:, 2017	

Example: Structure type 3B2 using 4/0 AAC with a line angle of 35° and a 40^{\prime} pole.
(1) Resultant Tension per Conductor:

$$
\begin{aligned}
& =1742 \times \frac{\sin 35^{\circ}}{\sin \left(90^{\circ}-\frac{35^{\circ}}{2}\right)} \\
& =1742 \times \frac{\sin 35^{\circ}}{\sin 72.5^{\circ}} \\
& =1047.7
\end{aligned}
$$

Resultant Tension due to 3 conductors $=1047.7 \times 3=3143.1 \mathrm{lbs}$
(2) The MINIMUM ANGLE between the guy and the pole is:

$$
\text { Min Angle }=\sin ^{-1}\left[\frac{\text { Resultant Tension }}{\text { Guy Rating }}\right]=\sin ^{-1}\left(\frac{3143}{7200}\right)=25.9^{\circ}
$$

Or, from the previous page:

$$
\begin{aligned}
\text { Min Guy Lead } & =\tan \left[\sin ^{-1}\left(\frac{\text { Resultant Tension }}{\text { Guy Rating }}\right)\right] \times \text { Guy Attachment Height } \\
& =\tan \left[\sin ^{-1}\left(\frac{3143}{7200}\right)\right] \times 33 \\
& =\tan 25.9^{\circ} \times 33 \\
& =16.0 \mathrm{ft}
\end{aligned}
$$

DATE: 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose	STANDARD ANCHOR AND GUYING DESIGN	
REV.:	STANDARD NO.	
DATE:	APPROVED BY:	STAND
	DATE: , 2017	$\mathbf{6 - 6}$

Guy and Anchor Arrangements

The anchor arrangements for standard line angles are outlined on page 6-8. The tables on pages 6-9 to 611 are intended for use in the selection, layout, and installation of guys and anchors for our standard structure types supporting primary and secondary conductors and communication cables.

Table Use

The tables give the number of guys, guy leads, and number of anchor rods for each standard structure type. The letter " S " in structure types denotes secondary.

The guying arrangement may vary depending on the line angle for a particular structure. For example, the maximum line angle for a 3B2S structure supporting 477 AAC is 25°. One guy for primary is adequate in this case for a maximum line angle of 10°; for line angles above 10° and up to 25°, two guys or a double guy (G2) must be used for the primary conductors. In both cases, a single guy is adequate for secondary conductors. Drawing 6-8 gives an outline of the guying arrangement for typical structures.

The guy lead is the horizontal distance from the pole to the point where the anchor rod enters the ground. Tables 6-9, 6-10 and 6-11 assume level ground between the pole and the anchor. If the ground is sloping, the guy lead should be decreased or increased accordingly.

Where two or more anchors are required, the guy lead refers to the outermost anchor; subtract 6 feet for the second and each consecutive anchor. Each anchor may have up to two guy attachments. The highest guy attachment on the structure shall be attached to the outermost anchor and other guys will be attached in similar sequence.

The guy leads listed in the tables are for the standard pole height as indicated. Add 2.5 feet to the minimum and 4.5 feet to the maximum guy leads for each extra 5 feet of pole height.

The anchor location should be chosen such that the guy lead will not be less than the minimum or exceed the maximum as determined from the tables. In the event that the minimum guy lead is not available and a reduced guy lead is available, the designer shall determine the additional requirements to ensure the structure meets the required design criteria.

DATE:, 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose		
REV.:	GUY AND ANCHOR ARRANGEMENTS	
DATE:		
	APPROVED BY:	STANDARD
	DATE: , 2017	6-7

NOTES：

1．THIS DRAWING OUTLINES THE GUYING ARRANGEMENTS AS PER THE TABLES ON PAGE 6－9，6－10 AND 6－11．
2．SEE TABLES PAGE 6－9，6－10 AND 6－11 TO DETERMINE IF SECONDARY GUYING，INDICATED BY BRCKEN LINES IS REQUIRED．

You＇ve got the power 497 NOETH EDND MD． F．O．DON 3E O．T．，OZAND CAMMAK， CAYMAM ISLANTE，EW．I． TELENONE：（345）－849－9300／5200	DATE： SEPT． 2017 DRAWN： S．POWER	DISTRIBUTIロN STANDA GUYING ARRANGEMENT FロR STANDARD STRUCTURES		
		Appraved er：	GTANDARD Nロ．$6-8$	
		DATE ：		

DATE: , 2017
DRAWN: C. Rose
REV.
DATE:

DISTRIBUTION STANDARDS

GUYING ARRANGEMENT AND ANCHOR LOCATION - 2/0 AAC

GUYING ARRANGEMENT AND ANCHOR LOCATION										
STR.TYPE	POLE HEIGHT	$\begin{gathered} \text { MAX. } \\ \text { LINE } \\ \text { ANGLE } \end{gathered}$	COMMUNICATION ATTACHMENTS (\# - dia.)	NUMBER OF GUYS				$\underset{\substack{\text { GUY LEAD } \\(\mathrm{ft})}}{ }$		NUMBER OF PISA ANCHORS
					POW		COMM.			
				G1	G2	SEC.		MIN.	MAX.	
4/0 AAC										
3B2	45'	20°		1				21	37	1
3B2	45'	20°	2-1"	1			1	21	37	1
3B2	45'	20°	3-1"	1			1	21	37	1
3B2	45'	20°	4-1"	1			1	23	37	1
3B2S	45'	20oㅡㅇ		1		1		21	37	1
3B2S	45'	20°	2-1"	1		1	1	21	37	2
3B2S	45'	20°	3-1"	1		1	1	21	37	2
3B2S	45^{\prime}	20°	4-1"	1		1	1	25	37	2
3B2	45'	40oㅡㅇ			1			21	37	1
3B2	45'	40°	2-1"		1		1	21	37	2
3B2	45'	40°	3-1"		1		2	21	37	2
3B2	45'	40°	4-1"		1		2	21	37	2
3B2S	45'	40응			1	1		21	37	2
3B2S	45'	40°	2-1"		1	1	1	23	37	2
3B2S	45'	40°	3-1"		1	1	2	22	37	3
3B2S	45'	40응	4-1"		1	1	2	25	37	3
3DE3	45'	-			1			21	37	1
3DE3	45'	-	2-1"		1		2	21	37	2
3DE3	45'	-	2-1"		1		1	28	37	2
3DE3	45'	-	3-1"		1		2	21	37	2
3DE3	45'	-	4-1"		1		2	24	37	2
3DE3S	45'	-			1	1		25	37	2
3DE3S	45'	-	2-1"		1	1	1	28	37	2
3DE3S	45'	-	2-1"		1	1	2	23	37	3
3DE3S	45'	-	3-1"		1	1	2	26	37	3
3DE3S	45'	-	4-1"		1	1	2	32	37	3

DISTRIBUTION STANDARDS

DATE: , 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose	GUYING ARRANGEMENT AND ANCHOR	
REV.:	LOCATION - 4/0 AAC	
DATE:	APPROVED BY: C. Rose	
	DATE: , 2017	

DISTRIBUTION STANDARDS

DATE: , 2017 DRAWN: C. Rose	DISTRIBUTION STANDARDS	
REV.:	GUYING ARRANGEMENT AND ANCHOR LOCATION - 477 AAC	
DATE:		
	APPROVED BY: C. Rose	STANDARD NO.
	DATE: , 2017	6-11

ANCHOR STUB

NOTEB:
5. THE EXPANDING SHELL ROCK ANCHOR IS USED FOR ANCHORING IN ROGK: THERE ARE TWO SIZES AVAILABLE, 30° AND $7^{1}-0^{\prime \prime}$,
6. THE 30° ANCHOR IS SUITABLE WHERE THE ROCK IS NEAR THE SURFACE, THE T-O" ANCHOR IS USED WERE THE ROCK IS COVERED WITH FLL OR TOPSOIL AND WHERE THE ROCK IS NOT GOOD QUAUTY ISOFT OR SHATTERED).
7. THE8E ANCHORS SHALL BE INSTALLED IN LNE WIH THE GUY ATTACHMENT LOCATION ON THE POLE

NOTIIS:

1. THE ANCHOR STUB HAS BEEN U8ED EXTENBIVEIY WHERE ANCHOR BECURITY AND STRENGTH IS REOUIRED; IT IS HOWEVER SOWEWHAT EXPENSIVE AND SHOULD BE USED ONLY WHEN SPECEICALLY REQUIRED.
2. A HOLE, APPROXIMATELY 24^{-}IN DIAMETER AND DUG TO A DEPTH OP $8^{\prime}-0^{\prime \prime}$ SHALL BE USED POR THE STUB ANCHOR, THE WOOD STUB SHOULD BE TIPPLD AWAY FROM THE POLE AS SHOWN AND THE HOLE FLLED WITH CONCRETE TO WITHW ABOUT 4. OF THE GROUND LINE- LEAVE ROOM FOR TOPSOIL AND LANDSCAPING.
3. THE WOOD STUB SHALL BE $10^{\circ}-0^{\circ}$ IN LENGTH AND NOT LESB THAN 10° W DIAMEIER.
4. TRPLE EYE ANCHOR BOLTS $\left(3 / 4^{\prime \prime} \times 30^{\prime \prime}\right)$ SHALL BE USED FOR THE GUY ATTACHMENT; ONE OR TWO BOLTS INBTALLED AB BHOWW.

5. THEEE ANCHORS ARE INSTALLED BY PLACING THE ANCHOR B A $17 / 8^{\circ}$ HOLE, DRLLED IM THE ROCK, AND TURN THE ROD (WITH A BAR THROUGH THE EYE OP THE ANCHOR RODI UNTIL THE
ANCHOR IS FIRMLY EXPAMDED AGAINAT THE SIOES OF THE HOLE

$\begin{aligned} & \text { WeN } \\ & \mathrm{Na} \end{aligned}$	ONTY.	MATERIAL	STOCX NO.
37	1	ROCKANCHOR 3/4 ${ }^{3} 30^{\circ}$	02900003
37A	1	ROCKANCHOR 3/4 ${ }^{\text {ch }}$	02900004

IIEM	CNTY.	MATERINL	STOCK HO.
388	1	ANCHOR FEX $\times 8.10{ }^{\circ}$-12	02900007
378	1	EKIENEION 5T	02900005

NOTES:

1. THE $8^{n}, 10^{\circ} \& \mathbf{1 2}^{\prime \prime}$ TRIPLE FELIX SHALL BE USED WHERE POOR SOIL CONDITIONS EXISTS, SUCH AS SAND, MUD OR WET MARL.
2. THE STANDARD EXTENSION ROD USED WTH THESE ANCHOR HEUX IS $5^{\prime}-0^{-}$
3. THESE ANCHORS SHALL BE INSTALLED IN LINE WITH THE GUY ATTACHMENT LOCATION ON THE POLE (A) TOP OF POLE OR (B) AT THE SECONDARY LOCATION
4. THE ANCHOR SHOULD PENETRATE AT LEAST 3 FEET OF COMPACT SOL TO ENSURE ADEQUATE HOLDING STRENGTH
5. INSTALLATION MUST BE INSTALLED WITH THE EXTENSION

	FROJECT CUC STANDARDS	DATE SCALE: DRAWN BY: CHECKED BY: APPROVED BY:	Jan 20 H NTS Dm	$\begin{aligned} & \text { FRORECT } \text { CUC SC } \\ & \text { DRAWING } 8-1 \mathrm{~B} \\ & \text { SHEET * } 01 \text { OP } 01 \\ & \text { REV. }=A \end{aligned}$	
	DRAWING		cuc sc		
	ANCHOR INSTALLATION		CuC BC	A	AUG
				mev.	newsom

ANCHOR(S) SHALL BE PLACED SO THAT GUY WIL BISECT ANGLES AS SHOWN (SEE PAGE 6-16).

STRUCTURE TYPES
B, B2, \& D
(LINE ANGLES UP TO 60')

LINE TERMINATION
STRUCTURE TYPES
DE, T, \& SE

ENSURE ANCHOR IS IN LNE WTH TERMINATION POLE \& SPAN.

LINE TERMINATION STRUCTURE WITH LARGE TRANSFOMER BANK

TWO ANCHORS SHAL BE USED TO STABIUZED STRUCTURE,
PARTICULARLY FOR POOR SOIL CONDITIONS; WHERE PRACTICAL LOCATE ANCHORS 6'-10' APART.

You've got the power 457 NORTM zJun mb. P.Q. DOX 3S O.T., OEAND CAMMN, CAMUAM IBLANEG, B.W.I. TREFWONE: (345)-849-9300/5200	DATE: SEPT. 2017 DRAWN: S.POWER	DISTRIBUTIロN STANDAR LDCATING ANCHDRS STANDARD DEADEND STRUCTURE		
	REV: DATE:			
		Appraved er:	GTANDARD ND.$6-15$	
		DATE :		

MEASURE A DISTANCE（X）ALONG EACH UNE TANGENT AND MARK．
MEASURE BETMEEN MARKS，THE DISTANCE Y ，AND MARK THE CENTRE POINT（ $1 / 2 \mathrm{Y}$ ）；THIS IS THE BISECTOR OF THE ANGLE ϕ ．

THE ANCHOR LOCATION WLL BE IN LNE WTH THE CENTRE POINT OF DISTANCE Y AND THE POLE（THE BISECTOR OF ANGLE \emptyset ）．

You＇ve got the power 457 NOETH zDuN MD． P．Q．BOX 38 O．T．，ORAND CAMMAN， CAMLEN ISLANBC，B．W．I． TREFNONE：（345）－849－5300／5200	DATE： SEPT． 2017 DRAWN： SPOWER		
	REV： DATE：	LロCATING BISECTVR FロR ANCHDR LDCATIDN	
		Appraved er：	GTANDARD Nロ．$6-16$
		DATE ：	

Non-Standard Guying Arrangement

The guy attachment point is specified for each structure type and includes variations for conductor size and guy leads. There will be, however, occasions where: (a) the guy location is not in accordance with the standards and the pole strength needs to be checked, or (b) it may be desirable to alter the guy location in specific instances because of clearance problems.

For example, let's assume we have; structure type $3 \mathrm{~B} 2,4 / 0$ conductor, 25° line angle, a 40 ft class 4 pole, 200^{\prime} wind span and a 200^{\prime} ruling span and the guy attachment point must be installed at 3 feet below the crossarm. The structure loading and the pole strength can be determined, at the desired guying location, in accordance with the following calculations:
(A) The structure loading can be determined (see page 2-4/5, 2-8/9 \& 6-3) as follows:

The combined load (page 6-3) is $1008 \mathrm{lbs} /$ conductor. The bending moment due to this conductor load is: 3 conductors x $1008 \mathrm{lbs} /$ conductor x $3^{\prime} 0 \prime \prime$ moment arm $=3 \times 1008 \times 3=\mathbf{9 0 7 2} \mathbf{f t}-\mathrm{lbs}$.
(B) The resisting moment of the pole can be determined form the formula on page 2-3 $\left(\mathrm{M}_{\mathrm{r}}=\mathrm{K}_{\mathrm{r}} \mathrm{F}_{\mathrm{b}}\right.$ $\mathrm{Cg}_{\mathrm{g}}{ }^{3}$).

The circumference at the desired guy location can be determined as follows: from page 3-2 the circumference is 21 " at the top of the pole and 33.5 " at the ground line; the total pole length above the desired guy location is $3^{\prime} 9^{\prime \prime}$; and the total pole length above ground is 34 ft . The pole circumference at the desired location is:

$$
21+(33.5-21) / 33.5 \times 3.75=21+1.4=22.4 \text { inches }
$$

The resisting moment $\left(\mathrm{M}_{\mathrm{r}}\right)$ at the desired guy location is $\mathrm{M}_{\mathrm{r}}=(0.000264) \times(8000) \times(22.4)^{3}=23,738 \mathrm{ft}-$ lbs. The load due to the wind on the pole can be neglected, however a safety factor of 3.0 minimum should normally be used. The design resistant moment now becomes $23,738 / 3=\mathbf{7 , 9 1 3} \mathbf{f t}-\mathbf{l b s}$.

The actual structure loading is $9,072 \mathrm{ft}$-lbs; therefore the pole strength for a class 4 pole is not adequate for this load. The design resistant moment for a 40 ft class 3 pole is $10,227 \mathrm{ft}-\mathrm{lbs}$ and can therefore support the load of $8,955 \mathrm{ft}-\mathrm{lbs}$.

Although a class 3 pole can support this load, with the guy located $3^{\prime} 0^{\prime \prime}$ from the crossarm, permanent deformation will occur in the pole and should only be used when absolutely necessary.

DATE: , 2017	DISTRIBUTION STANDARDS	
DRAWN: C. Rose		
REV.:	NON-STANDARD GUYING ARRANGEMENT	
DATE:		
	APPROVED BY: C. Rose	STANDARD NO.
	DATE: , 2017	6-18

1. GUY TYPE G3 IS A STANDARD OVERHEAD GUY.
2. EACH OVERHEAD GUY WIL REQUIRE A DOWN GUY (G1) UNLESS CALCULATIONS HAVE BEEN MADE TO DETERMINE OTHERWSE
3. THE NUMEER OF GUYS REQUIRED ON EACH STRUCTURE

TYPE IS SPECIFED IN SECTION 6 AND 8.

ITEM NO.	QUANTITY			MATERIAL
	OR			
$16 C$		1	BOLT-MACH $5 / 8 \times 12^{*}$	$098-00015$
27		1	WASHER-SQUARE $21 / 4^{\prime \prime}$	$973-00005$
45		1	HOOK-GUY	$437-00001$
42		AR	STRAND-GUY $3 / 8^{\prime \prime}$	$983-00002$
43		2	GRIP, PREFORMED GUY $3 / 8^{*}$	$408-00001$
48	1	1	INSULATOR - PORCELAIN GUY	$457-00009$

NOTES:

1. GUY TYPE G4 IS A STANDARD SIDEWALK GUY ARRANGDUENT.
2. ANCHOR IS NORMALLY LOCATED ON THE INSIDE OF THE SIDEWALK AND THE POLE ON THE OUTSIDE.
3. THIS GUY TYPE IS NOT ADEQUATE FOR USE ON DEADENDS PRIMARY OR SECONDARY.
4. THE STRENGTH OF THIS GUY IS LIMTED TO THE FOLOWING VALUES:
SECONDARY
15 Degree UNE ANGLE
SINGLE PHASE (2/0) 25 Degree UNE ANGLE
THREE PHASE (2/0) 15 Degree UNE ANGLE
THREE PHASE (4/0) 10 Degree UNE ANGLE
THREE PHASE (477) 5 Degree LINE ANGLE

ITEM NO.	QUANTITY	MA FERIAL	STOCK NO.
$16 C$	1	BCLT-MACH, $5 / 8 \times 12^{*}$	$09 B-00015$
26	2	SCREW-LAG $1 / 2 \times 4$	$744-00002$
27	1	WASHER-SQ. $21 / 4^{*}$	$973-00005$
40	1	FTTING-SIDEWALK GUY, POLE PLATE	$352-00001$
$40 A$	1	FTTING-SIDEWALK GUY, GUY END	$352-00002$
41	1	GUARD-GUY PLASTIC	$411-00001$
42	AR	STRAND-GUY 3/8"	$983-00002$
43	2	GRIP-PREFORMRD GUY 3/8"	$408-00001$
44	AR	PIPE-GALV. STEEL $2^{\prime \prime}$	-
45	1	HOCK - GUY	$473-00001$
48	1	INSULATOR - PORCELAIN GUY	$457-00009$

(27)

DISTRIBUTION STANDARDS

NOTES:

1. MAIN UNE STRUCTURES REQUIRING GUYS, WIL PROBABLY

REQUIRE THIS GUY REGARDLESS OF WHETHER THERE IS ALSO
a three phase tap in the same direction.
2. IN THESE SITUATIONS WHERE A THREE PHASE TAP AND A DOWN

GUY ARE REQUIRED ON THE SAME SIDE OF THE STRUCTURE
AND A CLEARANCE OF 7 INCHES CANNOT BE OBTAINED BETWEEN
THE CENTRE PHASE AND THE GUY (WITH GUY STRAIN INSULATOR)
TwO ALTERNATIVES ARE AVAILABLE:
(a) AN EXTENSION LINK CAN BE USED TO EXTEND THE DEADEND

INSULATOR OUTSIDE THE DOWN GUY (USE 24 INCH GUY STRAIN
INSULATOR, ITEM \#47B)
(b) THE CENTER PHASE CONDUCTOR CAN BE RELOCATED AWAY FROM

THE POLE (INSTAL ADDITIONAL D/A BOLT)
3. WHEN AN OVERHEAD GUY IS REQURED FOR THE

STRUCTURE GUYING, A GUY STRAIN INSULATOR IS
REQUIRED AT BOTH ENDS OF THE OVERHEAD GUY, SEE
PAGE 6-23.
4. A MINIMUM OF 7 INCHES CLEARANCE SHOULD BE

MAINTAINED ($5.25^{\prime \prime}$ TO INSULATED POSITION) BETVEEN
A GUY STRAIN INSULATOR AND AN ENERGIZD
CONDUCTOR.

TTEN			
NO:	ONTY.	MATEAAL	STOCK NO.
47B	1	INSULATOR (UNK) - GUY STRAIN -24^{*}	$457-00003$
47 C	1	INSULATOR (UNK) - GUY STRAN -54^{*}	$457-00002$

You've got the power 4OT NOETH EDUND RD. P.Q. DOK 38 O.T. OEAND CAYMAM, CAYMAM IZLANEC, BW.I. TELERONE: $(245]-949-2300 / 3200$	DATE: SEPT. 2017 DRAWN: S.POWER	DISTRIEUTIDN STANDARDS	
	$\begin{aligned} & \text { REV: } \\ & \text { DATE: } \end{aligned}$	GUYING WITH GUY STRAIN INSULATIRS	
		Appraved ar:	GTANDARD ND.$6-22$
		DATE :	

	$\begin{array}{cl} \text { DATE: } & \text { NOV. } 2017 \\ \text { DRAWN: } & \text { S.POWER } \end{array}$	DISTRIBUTIロN STANDARDS	
	$\begin{aligned} & \text { REV: } \\ & \text { DATE: } \end{aligned}$	GVERHEAD GUYING ARRANGEMENTS	
You've got the power F.Q. BOX 38 O.T., OZAND CAMIAN, TRepwove: (345)-249-9300/5200		appraved ar:	standard no.$6-23$
		date:	

