SECTION 10

TRANSFロRMER INSTALLATIロNS

Transformers - General

Our general policy on transformer sizes and types are listed on page $10-3$ and our general policy on U/G vs. O/H and services voltage is discussed on page 1-1. We have now standardized on a low loss transformer design as dictated by our high cost of generation (re losses) and in keeping with international environmental and energy conservation standards.

The low loss transformers are heavier because of the increase in the amount of core steel and winding material required to reduce losses; however, to compensate for this we have reduced the recommended size for three phase banks and will encourage U/G wherever possible.

Calculating Transformer Loads

The KVA and/or Amperes load is calculated, for any voltage, using the following formulae:-
(a) Single Phase

KVA $\quad=\quad \frac{\text { Amperes } x \text { Voltage }}{1000}$
Amperes $=\frac{\text { KVA x } 1000}{\text { Voltage }}$
(b) Three Phase

KVA $=\frac{\sqrt{3} \times \text { Amperes } x \text { Voltage }}{1000}$
Amperes $=\frac{\text { KVA } x ~ 1000}{\sqrt{3} \times \text { Voltage }}$

Transformer - Full Load Amperes							
Single Phase			Three Phase				
KVA	Amperes		KVA	Amperes			
	H.V.	$\mathbf{2 4 0 V}$		H.V.	$\mathbf{2 4 0 V}$	$\mathbf{2 0 8 V}$	480V
10	1.4	42	75	3.5	180	208	90
15	2.1	63	112	5.2	269	311	135
25	3.5	104	150	7.0	361	416	180
37.5	5.2	156	225	10.4	541	625	271
50	7.0	208	300	14.0	722	833	361
75	10.4	312	500	23.0	1203	1388	601
100	14.0	416	750	35.0			902
167	23.0	696	1000	46.0			1203
250	35.0	1042	1500	69.0			1804
333	46.0	1388	2000	92.0			2406

Three Phase: Open Wye - Open Delta

 NO NEW INSTALATIONS MAINTENANCE ONLYMany of our services consist of a large single-phase load (120/240V) and a small three-phase load (240 V); these are normally serviced with a two transformer, three-phase bank (closed delta, open delta). Both transformers carry the three-phase load and one carries the single-phase load. When using a open wye, open delta, each transformer is required to carry 58% of the three phase load. The transformers are normally referred to as the power transformer (carries three phase load only- smaller transformer and the lighting transformer (carries single phase load in addition to the three phase load - larger transformer).

For example, if a service is required to carry a single phase load of 28 KVA and a phase load of 11 KVA , the required transformer sizes are:-

	Large TFMR	Small TFMR
Single Phase	28 KVA	-
Three Phase (0.58 x 11)	6.4 KVA	6.4 KVA
Total Load	34.4 KVA	6.4 KVA
Actual TFMR SIZE	37.5 KVA	10.0 KVA

Another example - assuming a three-phase load requirement (customer) of 203 amperes, 37 amperes and 203 amperes, the transformer sizes can be determined as follows:
(a) The three phase load is 37 amperes;

$$
\mathrm{KVA}=\frac{\sqrt{ } 3 \times \text { amperes } \mathrm{x} \text { voltage }}{1000}=\frac{\sqrt{ } 3 \times 37 \times 240}{1000}=15.4
$$

When using two transformers the requirement is $0.58 \times 15.4 \mathrm{KVA}=8.9 \mathrm{KVA}$ for each of the two transformers. Therefore a 10 KVA is adequate for the power transformer.
(b) The single-phase load is 203 amperes, less the three-phase load of 37 amperes (203 $37=166$ amperes).

$$
\mathrm{KVA}=\frac{\text { amperes } \mathrm{x} \text { voltage }}{1000}=\frac{166 \times 240}{1000}=39.8
$$

(c) The lighting transformer size is now:- Single phase - 39.8 KVA, plus three phase $8.9 \mathrm{KVA}=48.7 \mathrm{KVA}$.

The power transformer (three phase) size is $10 \mathrm{KVA}(\mathrm{load}=8.9 \mathrm{KVA})$ and the lighting or load transformer size if $50 \mathrm{KVA}(8.9 \mathrm{KVA}+39.8 \mathrm{KVA}=48.7 \mathrm{KVA})$.

Since our smallest size transformer is 15 KVA (there may be some older 10KVA's available) we will have to use a 15 KVA for the power transformer; a 50 KVA transformer is satisfactory for the lighting load, however, if additional capacity is required for growth, a 75 KVA will have to be used - now our bank size is a 15 KVA and a 74 KVA .

When calculating the load (KVA) for an existing three-phase (two transformer) bank, use the lighting transformer leg with the higher ampere reading.

Locating Transformers on the Pole

The location of the transformer(s) on certain structures has an effect on the integrity of structure. Large single-phase transformers should never be placed on the side of a structure but rather on the front of the structure; the location of small transformers is not so important.

The overturning moment resulting from installing the transformer on the side of a pole is substantial; the resulting moment from a 167 KVA transformer Is equivalent to the pressure of a 45 MPH wind on a single phase structure with $2 / 0$ conductor. Unlike wind the overturning moment due to the transformer is continuous and in most cases will cause the pole to lean which in turn will increase the overturning moment.

In some cases where the transformer tank is long or the space on the pole is not as per standards, we may want to lower the transformer location; the overturning moment can be minimized by installing the transformer off line, enough to clear the neutral or the neutral and secondary conductors. The clearance from the transformer tank to the neutral can be minimal as both are at ground potential; however the clearance from the transformer tank to the secondary conductors must be a minimum of 6 inches. With guyed structures (type B) it is normally quite practical to lower the transformer location and maintain the required clearance to the secondary conductors.

The bottom of the transformer shall not be less than $24^{\prime} 0^{\prime \prime}$ from the ground on any structure with communication attachments.

It is a good practice to use only type "A", "B" and "DE" structure types for transformer installations. The installation of transformers on structures type "DV" structures require working around working clearances, guys, cutouts, etc and not recommended.

It is also a good practice to minimize the number of HV connections at a structure; limit the structure to either a HV tap or transformer(s), preferably not both. Although we cannot determine the location of a primary tap, we normally have alternatives for the transformer location, particularly single phase installations.

Transformer Types

Our specifications call for an internal arrester in all pole-mounted transformers. We do however have number of older transformers with no internal arrester; these transformers will require an external lightning arrester. All pad-mounted transformers will be protected by a lightning arrester at the cable dip.

The standardized size and type of single-phase transformers are:

Single Phase Transformers SIZE (KVA) TYPE AND VOLTAGE			
Pole Mounted Transformers			Padmount Transformers
$\mathbf{1 2 0 / 2 4 0 V}$	$\mathbf{2 2 7 / 4 8 0 V}$	$\mathbf{1 2 0} / \mathbf{2 0 8 V}$	$\mathbf{1 2 0 / 2 4 0 V}$
15			25
25	25	25	
37.5	37.5	37.5	
50	50	50	50
75	75	75	75
100	100	100	100
$* 167$			167
$* 250$			250

*Existing but not recommended for future Three Phase banks.

Three Phase Dead Front - Pad Mounted Transformers SIZE (KVA) TYPE AND VOLTAGE		
$\mathbf{2 4 0 / 1 2 0}$ Volt For Maintenance only	$\mathbf{1 2 0 / 2 0 8}$ Volt	$\mathbf{2 7 7 / 4 8 0}$ Volt
Loop	Loop	Loop
-	75	-
225	225	225
300	300	300
500	500	500
		1000
		1500
		2000

TRANSFORMER INSTALLATIONS

Our overhead three phase transformer bank installations will generally be limited to 300 KVA (3100 KVA's); Open delta banks should be limited to 167 KVA for the lighting transformer.

Pad mounted transformers will generally be used for all three phase loads of 300 KVA and larger; $120 / 208 \& 240 / 120$ volt services are limited to 500 KVA. Our preferred voltage for three phase services, 300 KVA and larger 277/480 volt.

Transformer Lead Size				
Transformer Rating (KVA)	Primary Lead	Secondary Lead		Transformer
Ground				
10 To 50	\#2 SDBC	Neutral Insulated	Hot I-4/0 AAC Insulated	\#2 SDBC
$75 \& 100$	\#2 SDBC	I-4/0 AAC Insulated	2-4/0 AAC Insulated	\#2 SDBC

Fuse Link and Current Limiting Fuse		
Transformer Rating KVA	Fuse Link	CLize (7200/1,500 Volts)
	1.4 SF	CLF
15	2.1 SF	12 K
25	3.5 SF	12 K
37.5	5.2 SF	12 K
50	7.0 SF	12 K
75	10.4 SF	12 K
100	14.0 SF	25 K
167	21.0 SF	25 K
250	32.0 SF	40 K
333	46.0 SF	40 K

Transformer Weight \& Height - Pole Mounted				
Rating KVA	Weight Range (lbs)		Height Range (lbs)	
	Standard Loss Older Types	Low Loss New Std.	Older Types	Low Loss New Std.
10				
15				
25				
37.5				
50				
75				
100				
167				
250				

GUidelines for Fusing Protection of DISTRIBUTION TRANSFORMERS

Single-Phase Transformers

(Polemounted or padmounted, in 1-phase or 3-phase applications)

Tx. Size (kVA)	Fuse size (Amps)	Fuse Type	A.B. Chance Catalogue Number	CUC Stock Number
15	2.1	SloFast	M2D1SFA23	LIN 374 000 11
25	3.5	SloFast	M3D5SFA23	LIN 374 000 12
37.5	5.2	SloFast	M5D2SFA23	LIN 374 000 15
50	7.0	SloFast	M7D0SFA23	LIN 374 000 19
75	10.4	SloFast	M10D4SFA23	LIN 374 000 20
100	14.0	SloFast	M14SFA23	LIN 374 000 17
167	21.0	SloFast	M21SFA23	LIN 37400018
250	32.0	SloFast	M32SFA23	LIN 374 00013
333	50.0	T	M50TA23	LIN 372 000 02

Three-Phase Transformers

Tx. Size (kVA)	Fuse size (Amps)	Fuse Type	A.B. Chance Catalogue Number	CUC Stock Number
150	7.0	SloFast	M7D0SFA23	LIN 37400019
225	10.4	SloFast	M10D4SFA23	LIN 37400020
300	14.0	SloFast	M14SFA23	LIN 37400017
500	21.0	SloFast	M21SFA23	LIN 37400018
750	32.0	SloFast	M32SFA23	LIN 37400013
1000	50.0	T	M50TA23	LIN 37200002
1500	80.0	T	M80TA23	LIN 37200003
2000	100.0	T	M100TA23	LIN 37200004

NOTES:

1. $\stackrel{\perp}{=}$ INOICATES A CONNECTION TO THE POLE GROUND.
2. THE PRIMARY NEUTRAL CONNECTON SHOULD NOT BE GROUNDED.
3. TRANSFORMER RATNG $7200-120 / 240$ VCLT.
4. SECONDARY 2O8V "HIGH" LEG IS DESIGNATED ORANGE IN ACCORDANCE WTH THE NEC. SECTION 230-56.
5. FOR TRANSFORUERS WTTH FOUR EXIERNAL SECONDARY BUSHINGS SEE DIAGRAM PG. 10-10.
6. ADOITIVE POLARITY SHOWN; FOR INCIMDUAL TRANSFORMERS WTH A SUBTRACTVE PQLARITY INTERCHANGE THE X1 AND X3 CONNECTIONS FOR THAT TRANSFORMER.

	$\begin{aligned} & \text { rronct } \\ & \text { CUC } \\ & \text { STANDARDS } \end{aligned}$	OATE: SCAE DRAWN BY Checked by: APPRONED By	Anc: 2011 NTS Du	тиonicr * \qquad DRAWDro * 240/1209 zamur * OT CF OT nalv. $*$ A
	DRAWING WYE CLOSED DELTA 240/120V		DU CJ CuC SC	

NOTES:

1. \perp INDIGATES A CONNECTION TO THE POLE GROUND.
2. THE PRIMARY NEUTRAL CONNECTION SHOULD NOT BE GROUNDED.
3. SECONDARY CONNECTIONS SHOWN FOR TRANSFORMER WITH FOUR SEPERATE EXTERNAL SECONDARY TERUINALS.
4. TRANSFORMERS RATING 7200-120/240 VOLT; (4 LV BUSHINGS)
5. SECONDARY 2O8V "HIGH" LEG IS DESIGNATED ORANGE IN ACCORDANCE WTH THE NEC. SECTION 230-56.
6. ADOMVE POLARITY SHOWN; FOR INDIMDUAL TRANSFORUERS WITH A SUBTRACTIVE POLARITY INTERCHANCE THE X1 ANO X3 CONNECTIONS FOR THAT TRANSFORMER.

NOTES:

1. $\xlongequal[=]{\perp}$ INDICATES A CONNECTION TO THE PQLE GROUND.
2. FOR DISTRIEUTION CIRCUTS WTH THE YELLOW (CENTRE) PHASE MORE HEAVLY LOADED THAN THE RED AND THE BLJE PHASE, CONNECT THE LOAD TRANSFORMER TO THE RED OR BLJE PHASE.
3. SECONDARY 208V "HIGH" LEG IS DESIGNATED ORANGE IN ACCORDANCE WTH THE NEC, SECTION 230-56.
4. ADCITIVE POLARTTY SHOWN; FOR INDIMDUAL TRANSFORMERS WITH A SUBTRACTIEE PCLARTY INTERCHANGE THE X1 AND X2 CONNECTIONS FOR THAT TRANSFORMER.

PROTBCT
CUC
STANDARDS

DRAWING

3 PHASE $7200 / 12470$ VOLT MULTI GROUNDED NEUTRAL, WYE CONNECTED SYSTEM.

NOTES:

1. $\stackrel{\perp}{=}$ INDICATES A CONNECTION TO THE POLE GROUND.
2. TRANSFORMER RATNG 7200-277V.
3. ADDIMVE PCLARITY SHOMN; FOR INDIVIDUAL TRANSFORMERS WITH A SUBTRACTIVE POLARITY INTERCHANGE THE X1 AND X2 CONNECTIONS FOR THAT TRANSFORMER.

NOTES:

1. $\underset{=}{\underline{I}}$ INDICATES A CONNECTON TO THE POLE GROUND.
2. TRANSFORMER RATNG 7200-120V: $120 / 240 \mathrm{~V}$ WINCING LEAOS MODIFED NTERNALLY IN THE TEST SHOP TO PROCUCE 120 V ONLY BETMEEN $\times 1 \& \times 3$ TERMNALS.
3. FOR TRANSFORUERS WTH FOUR EXIERNAL SECONDARY BUSHINGS. SEE DIAGRaM Pg. 10-13.
4. ADDITIVE POLARITY SHOWN; FOR INDIVDUAL TRANSFORMERS WITH A SUBTRACTIVE POLARITY INIERCHANGE THE X1 AND X3 CONNECTIONS FOR THAT TRANSFORMER.

NOT FOR NEW CONSTRUCTION

NOTES:

1. FOR EXISTING TRANSFORMER INSTALLATIONS ON 40' POLES. NEW INSTALLATIONS ARE TO BE INSTALLED ON 45^{\prime} POLES.
2. ROTATE EXISTING TRANSFORMERS (APPROX. 22.5' TO 45. SO THAT SECONDARY DOES NOT CONTACT TRANSFORMER

$8=\int$		OCT. 2011 DAC M.
0	REV	E
You've got the power	DATE	May 27, 2015
457 North Sound Ro. p.o. Box 3 g G. T., Grand Cayman Cayman islanos. b.w. 1 TELEFHONE: (345)-949-5300/5200		

EXISTING SINGLE PHASE
TRANSFロRMER INSTALLATIDN 15-75KVA

THREE PHASE TRANSFORMER - FULL LOAD AMPERES

KVA	H.V.	120 V	$\begin{aligned} & 208 \\ & \mathrm{~V} \\ & \hline \end{aligned}$	240 V	277 V	480 V
75	3.47	361	208	180	156	90
100	4.63	481	278	241	208	120
150	6.94	722	416	361	313	180
225	10.42	1083	625	541	469	271
300	13.89	1443	833	722	625	361
500	23.15	2406	1388	1203	1042	601
750	34.72	3608	2082	1804	1563	902
1000	46.30	4811	2776	2406	2084	1203
1500	69.45	7217	4164	3608	3126	1804
2000	92.60	9623	5551	4811	4169	2406

	IN RUSH CURRENT			COLD LOAD PICKUP	ICLP-2	HOT LOAD PICKUP	
KVA	Irush-12	IRUSH-25	ICLP-6	ICLP-3		IHLP-12	IHLP-15
75	41.7	86.8	20.8	10.4	6.9	41.7	52.1
100	55.6	115.7	27.8	13.9	9.3	55.6	69.4
150	83.3	173.6	41.7	20.8	13.9	83.3	104.2
225	125.0	260.4	62.5	31.3	20.8	125.0	156.3
300	166.7	347.2	83.3	41.7	27.8	166.7	208.3
500	277.8	578.7	138.9	69.4	46.3	277.8	347.2
750	416.7	868.1	208.3	104.2	69.4	416.7	520.9
1000	555.6	1157.5	277.8	138.9	92.6	555.6	694.5
1500	833.4	1736.2	416.7	208.3	138.9	833.4	1041.7
2000	1111.2	2315.0	555.6	277.8	185.2	1111.2	1389.0

IRUSH-
12
Irush-
25
OOLDOAD PICK UP @ 6 TMES RATED URRENT @ 1 SECOND
Illp-3 COLD LOAD PICK UP @ 3 TIMES RATED CURRENT @ 10 SECONDS
Illp-2 COLD LOAD PICK UP @ 2 TIMES RATED CURRENT @ 900 SECOND
Illp-12 HOT LOAD PICKUP @ 12 TIMES RATED CURRENT @ 0.1 SECOND
lılp-15 HOT LOAD PICKUP @ 15 TIMES RATED CURRENT @ 0.1 SECOND

SINGLE PHASE TRANSFORMER - FULL LOAD AMPERES

KVA	H.V.	$\mathbf{1 2 0} \mathbf{~ V}$	V
10	1.39	83	42
15	2.08	125	63
25	3.47	208	104
37.5	5.21	313	156
50	6.94	417	208
75	10.4	625	313
100	13.9	833	417
167	23.2	1392	696

	IN RUSH CURRENT			COLD LOAD PICKUP	ICLP-2	HOT LOAD PICKUP	
KVA	Irush-12	IRUSH-25	IcLP-6	IcLP-3		IHLP-12	IHLP-15
10	16.7	34.7	8.3	4.2	2.8	16.7	20.8
15	25.0	52.1	12.5	6.3	4.2	25.0	31.3
25	41.7	86.8	20.8	10.4	6.9	41.7	52.1
37.5	62.5	130.2	31.3	15.6	10.4	62.5	78.1
50	83.3	173.6	41.7	20.8	13.9	83.3	104.2
75	125.0	260.4	62.5	31.3	20.8	125.0	156.3
100	166.7	347.2	83.3	41.7	27.8	166.7	208.3
167	278.3	579.9	139.2	69.6	46.4	278.3	347.9

IRUSH-
12
IN RUSH @ 12 TIMES RATED CURRENT @ 0.01 SECONDS
IRUSH
25
IN RUSH @ 25 TIMES RATED CURRENT @ 0.01 SECONDS
Iclp-6 COLD LOAD PICK UP @ 6 TIMES RATED CURRENT @ 1 SECOND
Iclp-3 COLD LOAD PICK UP @ 3 TIMES RATED CURRENT @ 10 SECONDS
Iclp-2 COLD LOAD PICK UP @ 2 TIMES RATED CURRENT @ 900 SECOND
Itlp-12 HOT LOAD PICKUP @ 12 TIMES RATED CURRENT @ 0.1 SECOND
I llp-15 HOT LOAD PICKUP @ 15 TIMES RATED CURRENT @ 0.1 SECOND

